Create Dataframe
Create from CSV
import pandas as pd
nba = pd.read_csv("nba.csv")
Create from DB Results
results_df = pd.DataFrame(
columns=[
'lead_id',
'ekata_network_score',
'tier',
'loan_amount',
'loan_rate',
'loan_term',
'apr',
'total_payments',
'final_disposition'
])
for lead in accepted:
lead_id = lead[0]
final_disposition = lead[1]
amort_deets = atlas.getAmortDeets(lead_id)
loan_amount = amort_deets[0]
loan_rate = amort_deets[1]
loan_term = amort_deets[2]
apr = amort_deets[3]
total_payments = amort_deets[4]
tier = atlas.getTierById(lead_id)
ekata_network_score = atlas.ekataNetworkScore(lead_id)
new_row = {
'lead_id': int(lead_id),
'ekata_network_score': ekata_network_score,
'tier': tier,
'loan_amount': loan_amount,
'loan_rate': loan_rate,
'loan_term': loan_term,
'apr': apr,
'total_payments': total_payments,
'final_disposition': final_disposition
}
results_df = results_df.append(new_row, ignore_index=True)
results_df['lead_id'] = results_df['lead_id'].astype('int')
results_df.set_index('lead_id', inplace=True)
Series of index values
df.index
Array of all values
df.values
Value Datatypes
df.dtypes
DF Info<<
df.info()